S_N2' Selective Alkylation of Allylic Chlorides and Mesylates with RZnX Reagents Generated from Grignard Reagents, Zinc Chloride, Lithium Chloride, and Cu(II)-Salts

Nobutaka Fujii,* Kazuo Nakai, Hiromu Habashita, Hidenori Yoshizawa, and Toshiro Ibuka* Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Fabrice Garrido and André Mann*

Laboratoire de Pharmacochimie Moléculaire, Centre de Neurochimie-CNRS, 5, rue Blaise Pascal, F-67084 Strasbourg Cedex, France

Yukiyasu Chounan and Yoshinori Yamamoto*

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Abstract: Treatment of RMgX (1 equiv. R = alkyl; X = Cl, Br) with ZnCl₂ (1 equiv.) in a mixed solvent of THF and Et₂O leads to a highly turbid white suspension. Addition of LiCl (1-2 equiv.) solubilizes the insoluble species to yield a colorless clear solution. Addition of a catalytic amount of a Cu(II)-salt followed by allylic halides or mesylates at 0 °C ~ room temperature yielded S_N2' products in high yields. Application for the synthesis of (*E*)-alkene dipeptide isosteres is also reported.

The growing importance of peptide mimetics in synthetic and medicinal chemistries has created a need for developing efficient synthetic routes to various isosteres.¹ Recently, we have shown that alkene dipeptide isosteres can be prepared in high yields by the reaction of γ -mesyloxy- α , β -enoates with typical organocopper reagents in the presence of boron trifluoride.² However, both regio- and stereo-chemical control in the alkylation of allylic halides and sulfonates for the synthesis of alkene dipeptide isosteres still need considerable improvement and optimization. Herein we report that alkylzinc halides³ derived from Grignard reagents, zinc chloride, and lithium chloride⁴ act as good nucleophiles enabling S_N2' selective alkylation by the addition of a catalytic amount of cupric salts⁵ prior to their reaction with allylic substrates.

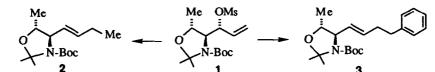


Table 1. Reaction of RZnCl, derived from RMgX and Zinc Chloride, with Mesylate (1)

Reagent ^{*1}	LiCl	Cu(acac) ₂	Reaction Conditions	Product	Yield*2
MeZnCl·Mg(Br)Cl	none	none	0 °C, 1 h*3	2	< 0.5 %
MeZnCl·Mg(Br)Cl	2 mol equiv.	none	0 °C, 1 h	2	< 1.6 %
MeZnCl·Mg(Br)Cl	none	10 mol %	0 °C, 1 h*3	2	< 10 %
	2 mol equiv.	10 mol %	0 °C, 30 min	2	92 %
PhCH ₂ ZnCl·MgCl ₂	2 mol equiv.	10 mol %	0 °C, 30 min	3	88 %
	MeZnCl·Mg(Br)Cl MeZnCl·Mg(Br)Cl MeZnCl·Mg(Br)Cl MeZnCl·Mg(Br)Cl	MeZnCl·Mg(Br)Cl none MeZnCl·Mg(Br)Cl 2 mol equiv. MeZnCl·Mg(Br)Cl none MeZnCl·Mg(Br)Cl 2 mol equiv.	MeZnCl·Mg(Br)Cl none none MeZnCl·Mg(Br)Cl 2 mol equiv. none MeZnCl·Mg(Br)Cl none 10 mol % MeZnCl·Mg(Br)Cl 2 mol equiv. 10 mol %	$\begin{array}{c cccc} MeZnCl·Mg(Br)Cl & none & none & 0 \ ^{o}C, 1 \ h^{*3} \\ MeZnCl·Mg(Br)Cl & 2 \ mol \ equiv. \ none & 0 \ ^{o}C, 1 \ h \\ MeZnCl·Mg(Br)Cl & none & 10 \ mol \ \% & 0 \ ^{o}C, 1 \ h^{*3} \\ MeZnCl·Mg(Br)Cl & 2 \ mol \ equiv. \ 10 \ mol \ \% & 0 \ ^{o}C, 30 \ min \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

*1 Four equivalents of the reagents were used. *2 All yields are based upon the isolated pure materials. *3 A white suspension.

Initially, we attempted the allylic substitution of the mesylate 1 with MeZnCl prepared from MeMgBr and ZnCl₂ at room temperature either in the absence or in the presence of LiCl. However, treatment of 1 with MeZnCl led to the nearly complete recovery of the starting material (Table 1, entries 1 and 2). In the absence of LiCl, the addition of a catalytic amount of Cu(acac)₂ to a suspension of MeZnCl prior to its reaction with 1 appears to be effective in promoting the desired reaction. However, the reaction was very slow and did not proceed to completion (Table 1, entry 3). As shown by entries 4 and 5 in Table 1, both LiCl and Cu(acac)₂ are essential additives for the clean reaction.

The addition of a catalytic amount of $Cu(OTf)_2$ to a solution of RZnCl·MgCl₂·nLiCl also permits alkylation of allylic chloride. The exposure of geranyl chloride 4, neryl chloride 5, and *p*-methoxycinnamyl chloride 9 to reagents prepared from RZnCl·MgCl₂·nLiCl and a catalytic amount of Cu(OTf)₂ gave rise to a mixture of S_N2' and S_N2 products. As shown in Table 2, the regioselectivities moderately favored the S_N2' products over the S_N2 products.

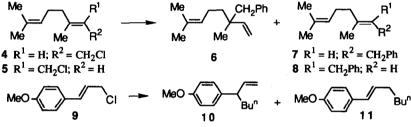
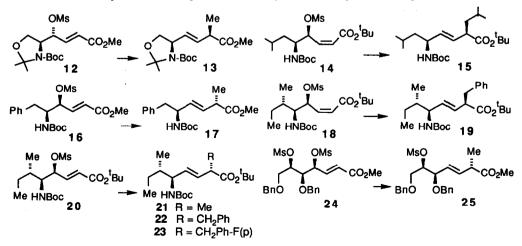



Table 2. Reaction of RZnCl with Allylic Halides 4, 5, and 9*1

Entry	Substrat	e Reagent ^{*1}	Cu(OTf) ₂	Reaction Conditions	S _N 2' (%)	S _N 2 (%)
1	4	PhCH ₂ ZnCl·MgCl ₂ ·2LiCl	3 mol %	THF-Et ₂ O (6:1), 0 °C, 5 h	6 (71%)	7 (13 %)
2	5	PhCH2ZnCl·MgCl2·2LiCl	3 mol %	THF-Et ₂ O (7:1), 0 °C, 7 h	6 (75 %)	8 (15 %)
3	9	n-BuZnCl·MgCl ₂ ·LiCl	5 mol %	THF-Et ₂ O (5:1), 0 °C, 7 h	10 (75 %)	11 (4 %)
		• -				

*1 Three to four equivalents of the reagents were used. All yields are based upon the isolated pure materials.

The present method was extended to the synthesis of (E)-alkene dipeptide isosteres 13, 15, 17, 19, 21, 22, and 23. The addition of a catalytic amount of cupric salts such as CuBr₂, Cu(OTf)₂, and Cu(acac)₂ to a solution of RZnCl·MgX₂·nLiCl (n = 1 or 2) enhances the reactivity and permits synthesis of the (E)-alkene dipeptide isosteres in high yields via an anti-S_N2' pathway from both (E)- and (Z)- γ -mesyloxy- α , β -unsaturated esters as shown in Table 3.⁹

In addition, dimesylate 24 furnished only the methylation product 25 in 87 % yield by treatment with a reagent prepared from MeZnCl·MgCl₂·2LiCl and 1 mol % of Cu(OTf)₂. Clearly, only the γ -mesyloxy group in 24 is involved in the reaction.

Entry	Substrat	e Reagent	Cupric Salt	Product	Yield ^{*2} (diastereoselection)	
1	12	MeZnCl·Mg(Br)Cl·LiCl	10 mol % Cu(OTf) ₂	13	86 %	(>99 : 1)
2	12	MeZnCl·Mg(Br)Cl·2LiCl	5 mol % CuBr ₂	13	94 %	(>99:1)
3	14	Iso-BuZnCl·MgCl ₂ ·2LiCl	10 mol % Cu(acac) ₂	15	86 %	(>99 : 1)
4	16	MeZnCl·Mg(Br)Cl·2LiCl	10 mol % Cu(acac) ₂	17	96 %	(>99:1)
5	18	PhCH ₂ ZnCl·MgCl ₂ ·2LiCl	5 mol % $Cu(OTf)_2$	19	75 %	(>99 : 1)
6	20	MeZnCl·Mg(Br)Cl·2LiCl	3 mol % CuBr ₂	21	91 %	(> 99 : 1)
7	20	PhCH ₂ ZnCl·MgCl ₂ ·LiCl	5 mol % Cu(OTf) ₂	22	96 %	(> 99 : 1)
8	20 (p)-1	F-C ₆ H ₄ CH ₂ ZnCl·MgCl ₂ ·LiCl	5 mol % Cu(OTf) ₂	23	91 %	(> 99 : 1)

Table 3. Reaction of RZnCl derived from RMgX, ZnCl₂, and LiCl with Some Mesylates*1

*1 All reactions were carried out in a mixed solvent of THF and Et₂O for 30 min~ 1 h and three to four equivalents of the reagents were used. *2 All yields are based upon the isolated pure materials.

H-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu- ψ [CH₂NH]Leu-NH₂ 26 H-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu- ψ [(E)-CH=CH]Leu-NH₂ 27

The synthesis of the analogue 27 of the bombesin receptor antagonist 26^{10} was also carried out wherein the Leu- ψ [CH₂NH]Leu isosteric unit was replaced with the alkene isostere 15. Thus, the protected isostere 15 was converted to an amino acid hydrochloride by treatment with TFA followed by 1 N HCl. The hydrochloride salt was transformed to an *N*-Boc-amino acid, which was condensed on a methylbenzhydrylamine resin. Finally, the peptide amide 27 was prepared by Boc-based solid phase peptide synthesis followed by deprotection with 1 M TMSOTf-thioanisole in TFA.¹¹

It has recently been shown by Kuwajima and his co-workers that some copper(II) compounds are highly effective for the conjugate addition.⁵ In the present allylic alkylations, although the exact oxidation state of the reactive copper species remains uncertain, the copper(II) salts that have been added to a solution of RZnCl would be reduced to copper(I) species by alkylzinc halides.¹² It should be noted that while these reagents work well for substitutions, it is not applicable to the other main mode of reactions, i.e., conjugate additions.

ACKNOWLEDGEMENT: Financial support from the CIBA-GEIGY Foundation (Japan) for the Promotion of Science is gratefully acknowledged.

REFERENCES AND NOTES

- Spatola, A. Chemistry and Biochemistry of Amino Acids, Peptides and Proteins: Weinstein, B., Ed.; Marcel Dekker: New York, 1983; Vol. 7, pp. 267-358. Ibuka, T. J. Synth. Org. Chem. Jpn. 1992, 50, 953-962. For a recent report, see Ando, R.; Morinaka, Y.; Tokuyama, H.; Isaka, M.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 1174-1175.
- Ibuka, T.; Habashita, H.; Funakoshi, S.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. Angew. Chem. Int. Ed. Engl. 1990, 29, 801-803. Ibuka, T.; Taga, T.; Habashita, H.; Nakai, N.; Tamamura,

H.; Fujii, N.; Chounan, Y.; Nemoto, H.; Yamamoto, Y. J. Org. Chem. 1993, 58, 1207-1214 and references cited.

- For RZnCl-mediated reactions of allylic compounds, see: Sekiya, K.; Nakamura, E. Tetrahedron Lett. 1988, 29, 5155-5156. For R₂CuZnCl-mediated reactions, see: Nakamura, E.; Sekiya, K.; Arai, M.; Aoki, S. J. Am. Chem. Soc. 1989, 111, 3091-3093. For organocopper reagents prepared from organozinc reagents, see: Knochel, P.; Yeh, M. C. P.; Berk, M. S.; Talbert, J. J. Org. Chem. 1988, 53, 2390-2392. Tamaru, Y.; Tanigawa, H.; Yamamoto, T.; Yoshida, Z. Angew. Chem. Int. Ed. Engl. 1989, 28, 351-353. Knochel, P.; Rao, S. A. J. Am. Chem. Soc. 1990, 112, 6146. Rao, S. A.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 5735-5741. Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445-1453. Yamamoto, Y.; Tanaka, M.; Ibuka, T. J. Org. Chem. 1992, 57, 1024-1026. For the transition metal-catalyzed reaction of organozinc reagents, see: Morizawa, Y.; Oda, H.; Ohshima, K.; Nozaki, H. Tetrahedron Lett. 1984, 25, 1163-1166. Ohshima, K., Adv. in Metalorganic Chemistry; Liebeskind, L. S. Ed.; JAI Press: London, 1991, vol. 2, p 101-141.
- For effect of Li salts, see: Hallnemo, G.; Ullenius, C. Tetrahedron Lett. 1986, 27, 395-398. Lipshutz, B. H.; Whitney, S. Kozlowski, J. A.; Breneman, C. M. Tetrahedron Lett. 1986, 27, 4273-4276. Lipshutz, B. H.; Ellsworth, E. L.; Dimock, S. H. J. Am. Chem. Soc. 1990, 112, 5869-5871.
- 5. Sakata, H.; Aoki, Y.; Kuwajima, I. Tetrahedron Lett. 1990, 31, 1161-1164. Aoki, Y.; Kuwajima, I. Tetrahedron Lett. 1990, 31, 7457-7460.
- 6. Haiduc, I.; Zuckerman, J. J. Basic Organometallic Chemistry, Walter de Gruyter, Berlin & New York, 1985, p. 70.
- 7. When organolithium derivatives are used, it is possible to start from a zinc chloride suspension in a mixed solvent of THF and Et2O. The lithium salt which results from the rapid metal-metal exchange reaction is able to dissolve the organozinc halide reagents presumably by "ate" complex formation. Benzyllithium could be prepared by either the addition of sec-butyllithium to toluene (Screttas, C. G.; Estham, J. F.; Kamienski, C. W. Chimia 1970, 24, 109-111) or the reaction of a benzyltellurium compound with n-butyllithium (Hiiro, T.; Kambe, N.; Ogawa, A.; Sonoda, N. Angew. Chem. Int. Ed. Engl. 1987, 26, 1187). The benzyllithium solutions, however, suffered from a serious disadvantage in that they were unstable over extended periods of time.
- 8. It is found that the filtered cake collected by filtration of the suspension in an argon atmosphere is active organometallic species. The addition of LiCl to a suspension of the filtered cake in THF resulted in a colorless clear solution. (see also ref. 22 in von dem Bussche-Hunnefeld, J. L.; Seebach, D. Tetrahedron 1992, 48, 5719-5730).
- 9. The following procedure is typical (Table 3, entry 5). Boc-Ile-ψ[(E)-CH=CH]Phe-OBu^t 19
 To a stirred suspension of LiCl (339 mg, 8 mmol) in 7 mL of dry THF at -78 °C, ZnCl₂ (8 mmol, 8 mL
 of a 1.0 M ZnCl₂ solution in Et₂O) and BnMgCl (8 mmol, 8 mL of a 0.65 M solution in THF) were
 added sequentially by syringe. The mixture was allowed to warm to 0 °C and then stirred at this
 temperature for 30 min. Cu(OTf)₂ (0.4 mmol, 144 mg) was added to the above clear mixture at 0 °C and
 the mixture was stirred for 5 min. A solution of α,β-enoate 18 (2 mmol, 842 mg) in dry THF (7 mL)
 was added dropwise to the above reagent at 30 °C with stirring. The mixture was allowed to warm to 0
 °C and the stirring was continued for 1 h. The usual work-up followed by recrystallization from a mixed
 solvent of *n*-hexane-CH₂Cl₂(10 : 1) gave 19 (804 mg, 96 % yield) as colorless crystals. mp 60-61 °C.
 [α]¹⁵D 63.03 ° (c 1.102, CHCl₃); Δε 5.11 (222 nm, isooctane). The product shows the
 appropriate ¹H- NMR (in CDCl₃), IR (in CHCl₃) spectra and microanalytical data.
- 10. Coy, D. H.; Taylor, J. E.; Jiang, N-Y.; Kim, S. H.; Wang, L-H.; Huang, S. C.; Moreau, J-P.; Gardner, J. D.; Jensen, R. T. J. Biol. Chem. 1989, 264, 14691-14697.
- 11. Fujii, N.; Otaka, A.; Ikemura, O.; Akaji, K.; Funakoshi, S.; Hayashi, Y.; Kuroda, Y.; Yajima, H. J. Chem. Soc., Chem. Commun., 1987, 274-275.
- 12. House, H. O.; Respess, W. L.; Whitesides, G. M. J. Org. Chem. 1966, 31, 3128-3141.

(Received in Japan 5 April 1993)